ANSYS 2019 R1 — Технические требования к программно-аппаратным комплексам и лицензионная политика в области HPC

© ANSYS, Inc., ООО «КАДФЕМ Украина», 2019
Содержание

1 Введение .. 4
2 Порядок подбора комплектующих рабочих станций и серверов 4
3 Архитектура центральных процессоров серверов .. 4
4 Оперативная память ... 5
5 Подсистема хранения данных .. 5
 5.1. Стандартные решения ... 5
 5.2. Параллельные файловые системы ... 5
 5.3. Альтернативные решения для кластеров ... 6
6 Использование сопrocessоров для ускорения расчетов 7
 6.1. Использование профессиональных NVIDIA GPGPU 7
 6.2. Использование непрофессиональных GPGPU от NVIDIA 8
 6.3. Использование Intel MIC для ускорения расчетов 8
 6.4. Использование профессиональных AMD GPU .. 8
 6.5. Рекомендации для ANSYS Mechanical .. 8
 6.6. Рекомендации для ANSYS Fluent .. 9
7 Поддерживаемые GPU для вывода графики .. 10
8 Интерконнект .. 11
 8.1. Mellanox Infiniband ... 11
 8.2. Intel Omni-Path .. 11
 8.3. 10 GigE .. 11
9 Поддерживаемые реализации MPI и их ограничения .. 12
10 Операционные системы серверов .. 12
 10.1. Дистрибутивы Windows .. 12
 10.2. Особенности настройки операционных систем Windows 13
 10.3. Дистрибутивы Linux ... 14
11 Менеджер и сервер лицензий ... 14
 11.1. Основные принципы .. 14
 11.2. Порты для работы менеджера лицензий .. 15
 11.3. Настройка клиента исполняющей системы ... 16
 11.4. Проверка открытости портов ... 16
 11.5. Работы старых версий ANSYS после обновления 19
12 Типовая конфигурация узлов кластера ... 19
13 Система планирования очереди задач ... 20
 13.1. Общие сведения ... 20
 13.2. ANSYS Remote Solve Manager .. 20
 13.3. ANSYS RSM Cluster ... 21
14 Работа с удаленными ресурсами и виртуализация ... 21
14.1. Средства доставки удаленных рабочих столов .. 21
14.2. Средства организации виртуализованных рабочих мест .. 22
15 Лицензионная политика для коммерческих продуктов ANSYS .. 22
15.1. Встроенные HPC возможности решателей .. 23
15.2. Лицензии ANSYS HPC (Workgroup) .. 23
15.3. Лицензии ANSYS HPC Pack .. 23
15.4. Лицензирование использования GPGPU для ускорения расчетов 24
15.5. Лицензии ANSYS HPC Parametric Pack .. 24
15.6. Лицензирование ANSYS LS-DYNA .. 25
15.7. Optimetrics + DSO ... 25
16 Лицензионная политика для академических продуктов .. 25
17 Документация ANSYS ... 25
Заключение .. 27
1 Введение

2 Порядок подбора комплектующих рабочих станций и серверов

Существует четкая последовательность создания конфигурации рабочих станций, серверов или узлов кластера для выполнения расчетов. Шаги, описываемые далее, следует выполнять строго по порядку.

1. Использовать центральные процессоры на основе архитектуры, выпущенной не позднее чем за 1 год до момента закупки. Желательно использовать самую новую процессорную архитектуру. Это позволит раскрыть все возможности актуальной версии ПО.

2. Из процессоров выбранной архитектуры отобрать модели с максимальной тактовой частотой – тактовая частота гарантирует более быструю работу ПО. При этом надо помнить, какое лицензионное покрытие вы имеете (сколько ядер на расчет можно задействовать). Возможно, оптимальным решением будет не самый высокочастотный процессор, а следующий за ним.

3. После окончательного выбора, сбалансированного по процессорам решение (тактовая частота/количество ядер), обеспечьте их необходимым количеством оперативной памяти. В среднем рекомендуется использовать 4 – 8 Гб памяти на ядро. Рекомендуется набрать объем памяти как можно меньшим количеством модулей. При этом надо помнить о количестве каналов работы с памятью в процессоре – все они должны быть задействованы. Так, например, не рекомендуется оснащать процессор с 4-х канальным контроллером памяти 2-мя или 3-мя планками оперативной памяти. Такая конфигурация не сможет использовать всю вычислительную мощность процессора.

4. Следующим шагом следует оптимизировать дисковую подсистему. Рекомендуется использовать твердотельные накопители. Больше всего они влияют на задачи механики, затем идут задачи электромагнитизма и радиофизики, и меньше всего к дисковой подсистеме чувствительна гидродинамика. важно, чтобы на быстром дисковом массиве располагалась первую очередь рабочая папка, а не директории, содержащие код решателя и операционной системы. В некоторых (редких) случаях для задач механики можно делать виртуальные диски из оперативной памяти (RAM Disk) – тогда необходимо оснастить компьютер двойным или тройным объемом оперативной памяти.

5. Только после оптимизации конфигурации системы по центральному процессору, оперативной памяти и дисковой подсистеме следует переход к выбору математических сопроцессоров NVIDIA и Intel. В случае NVIDIA необходимо выбирать решения с максимальной производительностью в операциях с двойной точностью и с максимальным объемом памяти.

6. В качестве графического процессора для вывода графики рекомендуется использовать профессиональные решения NVIDIA и AMD. Это существенно увеличит скорость работы графической подсистемы, сеточных генераторов и программных продуктов на основе геометрического ядра SpaceClaim.

3 Архитектура центральных процессоров серверов

ПО ANSYS и ANSYS Electromagnetics Suite работает только на серверах стандартной архитектуры Intel-AMD x86-64.
Для повышения эффективности работы решателей и снижения неоправданного расхода лицензий на программное обеспечение ANSYS и ANSYS Electromagnetics Suite, на всех вычислительных серверах необходимо отключить технологии виртуальной многопоточности Intel Hyper-Threading (HT), AMD Clustered Multi-Thread (CMT) и их аналоги. Данные технологии показывают прирост производительности расчетов не более 2%, но приводят к 2-х кратному перерасходу HPC лицензий.

Технологии динамического разгона ядер центральных процессоров Intel Turbo Boost и AMD Turbo Core наоборот положительно влияют на общую производительность системы – их рекомендуется всегда оставлять включенными.

4 Оперативная память

При выполнении расчетов в любом программном обеспечении рекомендуется использовать оперативную память с коррекцией ошибок. Использование памяти без коррекции ошибок может приводить к нестабильной работе решателей и/или возникновению численных погрешностей в результатах расчетов. Необходимо следить за соответствием количества установленных в сервер модулей памяти и количеством контроллеров памяти, встроенных в процессор, для получения максимальной производительности подсистемы памяти.

5 Подсистема хранения данных

5.1. Стандартные решения

На производительности решателей ANSYS и ANSYS Electromagnetics Suite положительно сказывается использование быстродействующей дисковой подсистемы. Самым требовательным к быстродействию дисковой подсистемы является ANSYS Mechanical/MAPDL. Использование быстродействующих SSD дисков, особенно с технологией подключения NVMExpress (NVMe, NVMHCI), или массивов на их основе может разы сократить время выполнения расчета.

5.2. Параллельные файловые системы

Из всех программных продуктов ANSYS и ANSYS Electromagnetics Suite в явном виде преимущества от использования параллельных файловых систем получает только распределённый решатель ANSYS Fluent при работе на Linux.

Поддерживаются следующие параллельные файловые системы:

- Panasas
- GPFS
- SFS
- LUSTRE
- MPFS

В текущем релизе прекращена поддержка файловой системы PVFS2.

Остальные решатели ANSYS получают преимущества от параллельных файловых систем косвенно – за счет высокого быстродействия последних. Таким образом, использование параллельных файловых систем является желательным, но не необходимым условием для высокопроизводительных систем.
5.3. Альтернативные решения для кластеров

При построении кластерных систем можно существенно ускорить работу решателей и снизить нагрузку на центральный дисковый массив, используя локальные диски узлов как промежуточные места хранения временных файлов расчетов. Например, у решателя ANSYS Mechanical есть специальная опция командной строки -dir, которая позволяет указывать путь хранения временных файлов на локальных дисках узлов.

5.4. Оптимальное использование SSD на рабочих станциях и серверах

Данная оптимизация работает в случае, если рабочая станция оснащена классическими механическими жесткими дисками для работы и хранения данных, а также быстroredействующими кэширующими твердотельными накопителями для выполнения расчетов. Начиная с версии ANSYS 19.0 в Workbench доступны специальные настройки для оптимального использования таких кэширующих SSD:

- Будем считать, что SSD диск виден в система как раздел «D».
- Перенос директории хранения временных файлов проекта осуществляется через главное меню Workbench> Tools> Options> Project Management, параметр «Folder for Temporary Files». В рассматриваемом примере директория D:\temp.

- Перенос рабочей директории решателей семейства ANSYS Mechanical осуществляется через главное меню Workbench> Tools> Options> Mechanical> Analysis Settings and Solution, параметр «Scratch Solver Files Directory». В рассматриваемом примере директория D:\scratch.
6 Использование сопроцессоров для ускорения расчетов

Некоторые решатели, входящие в состав ANSYS и ANSYS Electromagnetics Suite способны перекладывать часть вычислительных алгоритмов на графические ускорители общего назначения (General-purpose computing for graphics processing units, GPGPU) компании NVIDIA. Кроме того, существует ограниченная поддержка графических ускорителей компании AMD. Вычислительные системы, оснащенные подобными сопроцессорами, относятся к классу гибридных вычислительных систем.

Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

6.1. Использование профессиональных NVIDIA GPGPU

В актуальной версии возможно задействовать графические процессоры NVIDIA для ускорения расчетов следующих программных продуктов при работе решателей с общей и распределённой памятью, на серверах и кластерах, по несколько графических процессоров на сервер или узел:

- ANSYS Methochinical/APDL
- ANSYS Fluent
- ANSYS Polyflow
- ANSYS EMIT
- ANSYS HFSS
- ANSYS ICEPAK
- ANSYS Maxwell
- ANSYS Savant
- ANSYS Discovery Live

Для ускорения расчетов поддерживаются следующие графические карты:

- NVIDIA Tesla – любые модели на архитектуре Kepler и новее
- NVIDIA Quadro
Максимальное ускорение расчетов обеспечивают только GPGPU, обладающие высокой производительностью в вычислениях двойной точности. Список моделей с низкой производительностью:

- NVIDIA Tesla K10
- NVIDIA Tesla M4
- NVIDIA Tesla M40
- NVIDIA Tesla M6
- NVIDIA Tesla M60
- NVIDIA Tesla P4
- NVIDIA Tesla P40

В случае использования вычислительных узлов с GPU, для ускорения расчетов необходимо предусмотреть возможность учета количества доступных GPU как одного из ресурсов вычислительного узла при планировании очереди задач.

Для корректной работы функции требуется использование драйверов версии 346.59 или новее. Под Windows необходимо использовать режим работы драйверов Tesla Compute Cluster (TCC).

6.2. Использование непрофессиональных GPGPU от NVIDIA

Несмотря на то, что большинство решателей требует использования профессионального оборудования NVIDIA Tesla и Quadro, в портфолио ANSYS Electromagnetics Suite есть два решателя, способных использовать и непрофессиональные решения NVIDIA GeForce - это ANSYS Savant и ANSYS EMIT. Их работоспособность протестирована со следующими GPGPU NVIDIA GeForce: GTX 670, 680, 750Ti, 770, 780, Titan, 960, 970, 980.

Начиная с версии 19.1 существует возможность заставить решатели ANSYS Mechanical использовать непрофессиональные GPU NVIDIA. Для этого необходимо задать переменную окружения `ANSGPU_OVERRIDE=1`. Пользователи, задающие эту переменную, получают шанс задействовать непрофессиональные решения NVIDIA для своих расчетов. Однако, это является не поддерживаемым сценарием, может приводить к падению расчетов, а вместо ускорения расчет может замедлиться.

Непрофессиональные графические карты для ускорения расчетом могут быть использованы в ANSYS Discovery Live.

6.3. Использование Intel MIC для ускорения расчетов

Начиная с версии 19.0 компания ANSYS прекратила поддержку работы с ускорителями Intel Xeon Phi (Intel MIC, Intel Many Integrated Core Architecture).

6.4. Использование профессиональных AMD GPU

В настоящее время существует ограниченная поддержка ускорения расчета фактора видимости (viewfac) в ANSYS Fluent с использованием AMD. Другие типы решателей не поддерживают GPU от AMD для ускорения расчетов.

6.5. Рекомендации для ANSYS Mechanical

Наилучшего результата удается добиться для задач размерностью более 500K DOFs. Для обслуживания задачи размерности 1M DOFs требуется чуть менее 1 Гб памяти GPGPU.

Следующие типы расчетов поддерживаются для ускорения с использованием GPGPU NVIDIA:
• Линейный/нелинейный статический расчет с использованием решателей Sparse, PCG и JCG.
• Анализ линейной потери устойчивости с использованием решателей Block Lanczos или subspace eigensolver.
• Поиск собственных частот и форм с использованием решателей Block Lanczos, subspace, PCG Lanczos, QR damped, unsymmetric или damped eigensolver.
• Гармонический анализ с использованием решателя Sparse и полного метода расчета, а не разложения по собственным частотам и формам.
• Линейный/нелинейный динамический расчет с использованием решателей Sparse, PCG или JCG и полного метода расчета, а не разложения по собственным частотам и формам.

В ситуации, когда для выбранного типа расчета использование GPGPU невозможно, расчет будет продолжен с использованием только CPU.

При использовании решателя Sparse или решателей для поиска собственных частот и форм на основе Sparse решателя (например, Block Lanczos или subspace), рекомендуется использовать GPGPU NVIDIA с высокой производительностью в вычислениях двойной точности:

• NVIDIA Tesla Series (кроме: K10/M4/M40/M6/M60/P4/P40)
• NVIDIA Quadro GP100
• NVIDIA Quadro K6000
• NVIDIA Quadro GV100

Существуют небольшие ограничения на использование некоторых типов элементов и настроек расчета при использовании GPGPU NVIDIA. Так, ускорение будет деактивировано при наличии в задаче следующих особенностей:

• Околонулевые значения коэффициентов матрицы жесткости. Могут возникать при использовании элементов смешанной u-P формулировкой (mixedu-P formulation), элементов MPC184 с формулировкой множителей Лагранжа (Lagrange multiplier based MPC184 elements), контактных элементов с лагранжевой формулой (Lagrange multiplier based contact elements (от TARGE169 до CONTA178)) или элементов CIRCU94 или CIRCU124
• Включенная опция экономии памяти (MSAVE, ON) при использовании решателя PCG
• Несимметричная матрица жесткости при использовании решателя PCG
• Неподдерживаемые решатели (например, ICCG)

6.6. Рекомендации для ANSYS Fluent

Решение задачи занимает в памяти GPGPU такой же объем, как и в памяти CPU.

Существуют ограничения на запуск распределённого расчета с использованием GPGPU в узлах вычислительного кластера. Необходимо выполнить два следующих условия:

1. Количество процессорных ядер (ncpus), используемых в расчете, должно быть кратно количеству вычислительных узлов (nnodes), используемых в расчете.

\[
ncpu \mod nnodes = 0
\]

2. Количество процессорных ядер (ncpus), используемых в расчете, деленное на количество вычислительных узлов (nnodes), должно быть кратно количеству чипов GPGPU на один вычислительный узел (ngpgpu).

\[
\frac{ncpu}{nnodes} \mod ngpgpu = 0
\]

Пример оценки возможности расчета:
Количество ресурсов	Пример 1	Пример 2	Пример 3
Вычислительных узлов (nnodes) | 1 | 4 | 4
Процессорных ядер (ncpus) | 4 | 12 | 22
Чипов GPGPU на один вычислительный узел (ngpgpu) | 1, 2, 4 | 1, 3 | Расчет с использованием GPGPU невозможен, так как: ncpu mod nnodes ≠ 0

Рекомендации по выбору типа расчета и эффективности его выполнения с использованием GPGPU:

- Высокая эффективность использования GPGPU: однофазное течение для pressure-based coupled solver.
- Низкая эффективность использования GPGPU: многофазное течение для любого решателя или однофазное течение в нестационарной постановке для segregated solver.

Решатель Algebraic Multigrid (AMG) также может быть ускорен при помощи GPGPU. При этом может использовать до 5-ти связанных уравнений.

ANSYS Fluent способен видеть непрофессиональные графические карты NVIDIA GeForce и задействовать их для расчета, однако это приводит не к ускорению, а к многократному замедлению работы решателя.

7 Поддерживаемые GPU для вывода графики

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite рассчитано на работу с графическими картами с поддержкой OpenGL 4.5. ANSYS протестирован на совместимость только со следующими сериями GPU:

- AMD FirePro
- AMD FirePro W
- AMD Radeon Pro
- NVIDIA GeForce
- NVIDIA Quadro
- NVIDIA Quadro FX
- NVIDIA Quadro K
- NVIDIA Quadro M
- NVIDIA Quadro P
- NVIDIA Quadro GP

Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

Использование встроенных графических карт (например, Intel HD, Matrox и других) не рекомендуется из-за низкой производительности последних.
8 Интерконнект

Решатели ANSYS и ANSYS Electromagnetics Suite при работе на системах с распределённой памятью используют для своей работы библиотеки Message Passing Interface (MPI). Подробная информация о поддержке MPI приведена в разделе «9 Поддерживаемые реализации MPI и их ограничения». Библиотеки MPI требуют для эффективной работы решателей наличия в составе системы быстродействующей сети, называемой интерконнектом. Быстродействие решателей напрямую зависит от пропускной способности (bandwidth) интерконнекта и времени его отклика (latency). Для работы MPI не требуется наличия IP адресации в сети интерконнекта, однако оно может потребоваться для иных целей (например, доступа к общей директории).

Требуется использование интерконнекта во всех узлах кластера, задействованных для выполнения расчетов в ANSYS и ANSYS Electromagnetics Suite, а также на управляющих узлах кластера. В противном случае, становится невозможным запуск задач на расчет с использованием системы управления кластером, а в некоторых случаях теряется полная работоспособность решателей ANSYS.

8.1. Mellanox Infiniband

Рекомендуемым интерконнектом для построения HPC систем является Mellanox Infiniband. Данный тип интерконнекта не только гарантирует максимальные показатели быстродействия, но обеспечивает полностью аппаратное функционирование сети. Таким образом, даже интенсивный обмен данными по сети интерконнект не вызывает паразитной загрузки процессоров вычислительных серверов.

Программное обеспечение всех контроллеров Infiniband и драйверов, устанавливаемых в операционные системы, должно быть протестировано на отсутствие конфликтов из-за несовместимости версий. Микропрограммы контроллеров Infiniband и установленные драйверы для операционных систем должны быть совместимы.

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite неработоспособно на «безкоммутаторных кластерах» с интерконнектом Infiniband, содержащих более 2-х узлов (последовательное соединение нескольких узлов по цепочке с использованием нескольких портов IB). Для кластеров, состоящих из 3-х и более узлов, необходимо использовать коммутаторы.

8.2. Intel Omni-Path

Начиная с версии ANSYS 18.0 реализована поддержка интерконнекта Intel Omni-Path, схожего по быстродействию с Mellanox Infiniband. Для корректной работы необязательно наличие драйверов OFED версии не старее 10.2.

8.3. 10 GigE

Стандартная 10 Гигабитная сеть Ethernet может быть использована только для построения небольших (до 4-х узлов) кластеров, и только для CFD расчетов. Во всех других случаях (механические или электромагнитные решатели, работающие более чем на 1-ом узле; гидродинамические решатели, работающие более чем на 4-х узлах) использование этого интерконнекта приводит к существенному (в несколько раз) падению производительности.
9 Поддерживаемые реализации MPI и их ограничения

ANSYS поддерживает ряд реализаций MPI для работы решателей с распределённой памятью. Для разных продуктов возможно отличие в списке поддерживаемых реализаций MPI. Полный список поддерживаемых MPI по продуктам доступен по ссылке в разделе «Документация ANSYS» данного документа.

Необходимые реализации Intel MPI и IBM Spectrum MPI (ранее известный как IBM Platform MPI) поставляются в составе дистрибутивов программных продуктов ANSYS. MS MPI бесплатно поставляется Microsoft в составе HPC Cluster Pack.

Обратите внимание, что IBM Spectrum MPI, поставляемый в составе дистрибутива ANSYS, не поддерживает запуск задач, более чем на 4096 ядер. Для запуска задач на большее число ядер необходимо приобретение дополнительных лицензий от IBM. Intel MPI, идущий в составе дистрибутива, подобных ограничений не имеет.

10 Операционные системы серверов

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite протестировано для работы на основных коммерчески поддерживаемых дистрибутивах операционных систем. Планы развития поддержки операционных систем можно найти по ссылке в разделе «Документация ANSYS» данного документа.

Не все программные продукты ANSYS и ANSYS Electromagnetics Suite доступны как на Linux, так и на Windows. Некоторые из них могут быть доступны в урезанной версии (без графического интерфейса) или вообще отсутствовать для одной из платформ. Полный список совместимости доступен по ссылке в разделе «Документация ANSYS» данного документа.

Для наиболее полного охвата возможностей ПО ANSYS и ANSYS Electromagnetics Suite рекомендуется использовать на рабочих местах инженеров операционные системы Windows.

10.1. Дистрибутивы Windows

Планы по развитию платформы ANSYS и ANSYS Electromagnetics Suite под Windows:

<table>
<thead>
<tr>
<th>Платформа</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 7 Professional и Enterprise</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>Windows 10 Professional, Enterprise и Education</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>Windows Server 2012 R2 Standard</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>Windows Server 2016 Standard</td>
<td>да**</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>Windows Server 2019 Standard</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
</tbody>
</table>

(**) Только сервер лицензий
10.2. Особенности настройки операционных систем Windows

Современные операционные системы Windows имеют встроенный защитный механизм User Account Control (UAC), который может помешать работе программного обеспечения ANSYS и ANSYS Electromagnetics Suite. Для установки ANSYS и ANSYS Electromagnetics Suite необходимо выполнять запуск инсталлятора только с полными администраторскими правами. При включенном UAC это означает запуск через контекстное меню, от имени администратора.

Рекомендуемые действия при установке на Windows 7 - отключить UAC и установить ПО от имени администратора. Также возможно оставить UAC включенным, но производить установку от имени администратора и использованием команды контекстного меню.

Рекомендуемые действия при установке на Windows 8.1 и 10 - отключить UAC и установить ПО от имени администратора и использованием команды контекстного меню.

При невыполнении указанных действий, установка ПО производится в директорию %AppData%\Local\VirtualStore\<path>, что вызывает частичную или полную неработоспособность ПО.
10.3. Дистрибутивы Linux

Внимание, SUSE прекращает поддержку SLED 11.

Планы по развитию платформы ANSYS и ANSYS Electromagnetics Suite под Linux:

<table>
<thead>
<tr>
<th>Платформа</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.0</td>
<td>19.1</td>
<td>19.2</td>
</tr>
<tr>
<td>RHEL 6.8</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 6.9</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 6.10</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.2</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.3</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.4</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.5</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.6</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.7</td>
<td>да*</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>RHEL 7.8</td>
<td>да*</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 11 SP3</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 11 SP4</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 12 SP1</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 12 SP2</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 12 SP3</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 12 SP4</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>SLES / SLED 15 SP0</td>
<td>да*</td>
<td>да*</td>
<td>да*</td>
</tr>
<tr>
<td>SLES / SLED 12 SP1</td>
<td>да*</td>
<td>да*</td>
<td>да*</td>
</tr>
<tr>
<td>CentOS 7.3</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>CentOS 7.4</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>CentOS 7.5</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>CentOS 7.6</td>
<td>да*</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>CentOS 7.7</td>
<td>да*</td>
<td>да</td>
<td>да</td>
</tr>
</tbody>
</table>

(*) Если позволит реализация продукта.
(**) Не для всех продуктов ANSYS
(+) Не будет поддерживаться работа Fluent 19.2 на SLES 11

Использование неподдерживаемых дистрибутивов Linux, бесплатных и открытых клонов коммерческих дистрибутивов (Fedora, openSUSE, Scientific Linux, Oracle LINUX), дистрибутивов Linux на основе Debian и Ubuntu может привести к невозможности функционирования программного обеспечения ANSYS и ANSYS Electromagnetics Suite и потере технической поддержки.

11 Менеджер и сервер лицензий

11.1. Основные принципы

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite использует плавающие сетевые конкурентные лицензии, работающие по технологии FlexNET. Для организации работы таких лицензий в локальной сети предприятия на один из компьютеров (далее – сервер лицензий) устанавливается специальное программное обеспечение (далее – менеджер лицензий), которое позволяет компьютеру выполнять соответствующую роль.

Программное обеспечение менеджера лицензий не оказывает какой-либо заметной нагрузки на сервер при обслуживании до тысячи клиентов. Менеджер лицензий для своей работы требует открыть несколько TCP портов на сервере лицензий на входящие и исходящие подключения.

Для стабильной работы версия менеджера лицензий должна быть не младше чем версия используемого программного обеспечения ANSYS и ANSYS Electromagnetics Suite. В противном случае могут наблюдаться сбои в работе решателей, некорректная работа актуальных лицензий.

В файле лицензионного ключа, работающего по технологии FlexNET, содержится набор строк, активирующих тот или иной программный продукт или его отдельную возможность. Такие строки (или блоки строк) обычно начинаются с ключевого слова «INCREMENT» - далее мы будем называть их инкрементами.

Для работы программного продукта или активации определённой возможности программного продукта необходим один или несколько инкрементов. Детальное описание всех используемых инкрементов приведено в документации к ANSYS и ANSYS Electromagnetics Suite, в разделе: ANSYS Help > Installation and Licensing > Installation and Licensing Documentation > Licensing Guide > Product Variable Table

11.2. Порты для работы менеджера лицензий

Программное обеспечение менеджера лицензий состоит из трех служб.

- FlexNet License Manager Daemon (lmgrd)
- The Vendor Daemon (ansyslmd)
- ANSYS Licensing Interconnect (ansysli_server)

lmgrd – отвечает за запуск и работоспособность ansyslmd; перенаправляет ему запросы клиентского ПО на лицензии. Порт, на котором работает данная служба, определяется строкой лицензионного ключа, начинающейся со слова SERVER:

```
SERVER <hostname> <hostid> <lmgrd_port>
```

<table>
<thead>
<tr>
<th><hostname></th>
<th>имя сервера лицензий</th>
</tr>
</thead>
<tbody>
<tr>
<td><hostid></td>
<td>уникальный идентификатор сервера лицензий: MAC-адрес или серийный номер жёсткого диска (зависит от типа лицензии)</td>
</tr>
<tr>
<td><lmgrd_port></td>
<td>порт службы lmgrd – по умолчанию 1055</td>
</tr>
</tbody>
</table>

ansyslm – обеспечивает работу лицензий определённого производителя (вендора). Он отслеживает использование лицензий. В случае его остановки все клиенты получают сообщение, что лицензии недоступны. Порт, на котором работает данная служба, определяется строкой лицензионного ключа, начинающейся со слова VENDOR. По умолчанию он не задан и выбирается динамически при запуске службы.

```
```
ansyslmd	имя службы вендора программного обеспечения
[vendor_daemon_path] | опциональное указание пути к исполняемому коду службы ansyslmd
[options=]options_file_path | опциональное указание пути к файлу управления доступом к лицензиям
[[port=]port] | опциональное указание порта, на котором запускается служба ansyslmd

ansysli_server – отвечает за коммуникацию и взаимную аутентификацию служб lmgrd и ansysli_server. По умолчанию именно ansysli_server запускает lmgrd, который, в свою очередь, запускает ansyslmd. Порт, на котором работает данная служба, по умолчанию задан как 2325 и может быть изменен редактированием лицензионного ключа.

Для корректной работы менеджера лицензий все 3 порта (lmgrd, ansyslmd, ansysli_server) должны быть открыты.

11.3. Настройка клиентской стороны

По умолчанию информация об используемых менеджерах лицензий на клиентской стороне прописывается в файле ansyslmd.ini, который по умолчанию находится в директории:

- **Windows:** C:\Program Files\ANSYS Inc\Shared Files\licensing
- **Linux:** /ansys_inc/shared_files/licensing

Расположение файла ansyslmd.ini может быть задано переменной окружения ANSYSLMD_LICENSE_FILE. Файл создается и просматривается при помощи утилиты "Client ANSPLIC_ADMIN utility".

Пример содержания файла:

```ini
SERVER=1055@license
ANSYSLI_SERVERS=2325@license
```

При наличии в компании нескольких серверов лицензий возможно указать их все в формате:

```ini
SERVER=1055@license
ANSYSLI_SERVERS=2325@license
SERVER=1055@license2
ANSYSLI_SERVERS=2325@license2
```

Также возможна настройка доступа к серверу лицензий через переменные окружения. Для этого необходимо задать одновременно переменные ANSYSLMD_LICENSE_FILE и ANSYSLI_SERVERS следующим образом:

```ini
ANSYSLMD_LICENSE_FILE=1055@license;1055@license2
ANSYSLI_SERVERS=2325@license;2325@license2
```

11.4. Проверка открытости портов

Наиболее простым способом проверки открытости портов на сервере лицензий является «прозвон портов» при помощи утилиты telnet, которая, как правило, идет в составе дистрибутивов Linux и может быть активирована в Windows при помощи следующих действий:
Для проверки открытости порта `<port>` на сервере `<hostname>` необходимо выполнить команду:

```
telnet <hostname> <port>
```

Если вы не получите сообщение об ошибке соединения, то порт открыт.
Пример: порт 1000 закрыт на сервере license.

1. Командная строка для запроса

2. Сообщение об ошибке:

Пример: порт 1055 открыт на сервере license.

1. Командная строка для запроса:

2. Нет сообщения об ошибке – соединение установлено:
11.5. Работы старых версий ANSYS после обновления

Более старые версии ANSYS и ANSYS Electromagnetics Suite должны работать на более новых ключах и с более новым менеджером лицензий. Менеджер лицензий всегда должен быть обновлен до актуальной версии, чтобы иметь возможность понимать все возможности, заложенные в лицензионном ключе.

В редких случаях могут наблюдаться проблемы с работой старой версии ПО после обновления сервера лицензий/установки нового лицензионного ключа – старая версия ПО не может получить лицензии. В этом случае необходимо в утилите «User License Preferences» для версии ПО, с которой наблюдаются проблемы, произвести сброс настройки по умолчанию нажатием на кнопку «Reset to default».

12. Типовая конфигурация узлов кластера

При общении с потенциальными заказчиками и поставщиками аппаратного обеспечения необходимо помнить, что в большинстве случаев под кластером они понимают отказоустойчивую систему организации корпоративной сети, а не высокопроизводительное решение для математических расчетов. Необходимо всегда уточнять, есть ли у поставщика компетенция по настройке именно высокопроизводительных кластеров для проведения математических расчетов.

При проектировании кластеров под ПО ANSYS стоит учитывать, что головной узел, являющийся управляющим узлом, как правило, участвует в выполнении расчетов. Данный узел должен оснащаться всеми интерконнектами наравне с вычислительными узлами – он является первым вычислителем в списке ресурсов планировщика очереди задач.

Кластеры, используемые для гидродинамических расчетов и расчетов быстропротекающих процессов, могут быть построены из одинаковых узлов. Объем оперативной памяти расчетного узла определяется как ~4 Гб на ядро процессора.

Кластеры, используемые для механических расчетов, рекомендуется проектировать так, чтобы головной узел/узел постановки задачи на расчет имел в 2-3 раза больше оперативной памяти, чем остальные узлы кластера. Объем
оперативной памяти расчетного узла определяется как ~4 – 8 Гб на ядро процессора. Кроме того, рекомендуется оснастить все узлы кластера локальными быстroredействующими дисками для хранения промежуточных файлов расчетов.

Во всех случаях конфигурация всех узлов, на которых должен выполняться расчет, должна быть гомогенна; а именно, во всех серверах должно совпадать количество CPU, GPGPU, их модели. Допускается различие по объемам оперативной памяти и дисковой подсистемы.

13 Система планирования очереди задач

13.1. Общие сведения

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite может взаимодействовать с большим числом коммерчески поддерживаемых планировщиков очереди задач для кластеров и машин с общей памятью:

- Altair PBS Professional
- Adaptive Computing TORQUE
- ANSYS RSM Cluster (ARC)
- IBM Platform Load Sharing Facility (LSF)
- Univa Grid Engine
- Microsoft HPC Cluster Pack 2012R2 (версия 2016 не будет поддерживаться до R2019 R1)

При использовании клонов описанных планировщиков (OpenPBS, OpenLAVA, Torque, JAM, Sun/Oracle Grid Engine) или других систем организации (SLURM) очереди задач работоспособность ПО ANSYS может быть нарушена. Техническая поддержка данных решений в рамках стандартного договора техподдержки не осуществляется.

Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

Существует теоретическая возможность настройки работы решателей ANSYS и ANSYS Electromagnetics Suite с любыми планировщиками очереди задач, однако такой проект требует разработки и поддержки скриптов интеграции, что не входит в стандартные услуги технической поддержки TECS.

13.2. ANSYS Remote Solve Manager

В составе ANSYS идет специализированное программное обеспечение ANSYS Remote Solve Manager (RSM), предназначенное для упрощения взаимодействия с поддерживаемыми планировщиками очереди задач. Существует возможность настроить взаимодействие RSM с любым планировщиком очереди задач, однако данная настройка не может осуществляться в рамках стандартного договора технической поддержки TECS.

RSM встроен в ANSYS Workbench и позволяет упростить запуск расчетов для следующих решателей:

- ANSYS Mechanical (кроме случаев работы с решателями Samcef и ABAQUS)
- ANSYS Mechanical APDL
- ANSYS Fluent
- ANSYS CFX
- ANSYS Icepak
- ANSYS Polyflow
- ANSYS Explicit STR
- ANSYS Rigid Body Dynamics

13.3. ANSYS RSM Cluster

Начиная с релиза 18.2, в составе дистрибутива ANSYS бесплатно поставляется собственный планировщик очереди задач ANSYS RSM Cluster (ARC). Данный планировщик способен организовывать очередь задач на кластерах под управлением Windows и Linux. Планировщик может работать совместно с RSM, имеет собственный командный интерфейс командной строки.

14 Работа с удаленными ресурсами и виртуализация

Программное обеспечение ANSYS и ANSYS Electromagnetics Suite поддерживает работу на удаленных виртуальных и физических серверах и рабочих станциях.

При такой работе важно обеспечить производительную доставку сложной инженерной графики с удаленных рабочих столов. Не все стандартные средства терминального доступа удовлетворяют этим запросам. Кроме того, важно следить, что бы на удаленном сервере приложений была соответствующая аппаратная часть, способная отображать и передавать инженерную графику.

Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

Описываемые в данном разделе системы доставки графики и виртуализации прошли тестирование, выполненное компанией ANSYS, Inc. для программных продуктов: SpaceClaim Direct Modeler (ANSYS SCDM), DesignModeler, DesignXplorer, ICEM CFD, HFSS, Maxwell, Q3D, Slwave, AIM, System Coupling, Autodyne, CFX, CFD-Post, Fluent, Icepak, Mechanical, Meshing, Mechanical APDL, Explicit STR, Polyflow, Fluent-Meshing, TurboGrid, EKM.

Техническая поддержка не распространяется на ошибки, возникающие только при работе с использованием систем удаленной визуализации и не воспроизводящиеся на физических серверах с аналогичными характеристиками.

Использование неподдерживаемых систем удаленной визуализации или систем виртуализации может привести к частичной или полной неработоспособности программного обеспечения ANSYS и ANSYS Electromagnetics Suite. Если вы хотите использовать неподдерживаемую конфигурацию дополнительно проконсультируйтесь со специалистами ООО “КАДФЕМУкраина”.

14.1. Средства доставки удаленных рабочих столов

<table>
<thead>
<tr>
<th>Система доставки</th>
<th>Клиент</th>
<th>ОС сервера приложений</th>
<th>GPU сервера приложений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows RDP*</td>
<td>Windows</td>
<td>Windows 7, 10, Windows Server 2016</td>
<td>NVIDIA и AMD</td>
</tr>
<tr>
<td>VNC Connect 6.3 и VirtualGL 2.6</td>
<td>Windows/Linux</td>
<td>RHEL 6, 7 CentOS 7</td>
<td>NVIDIA и AMD</td>
</tr>
<tr>
<td>Nice DCV 2017.1</td>
<td>Windows/Linux</td>
<td>Windows 7, 10, Windows Server 2016, RHEL 6, 7</td>
<td>NVIDIA**</td>
</tr>
</tbody>
</table>
Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

При некорректной настройке Microsoft Remote Desktop может не позволять использовать GPU для ускорения расчетов. Правильные настройки описаны в разделе «Использование профессиональных NVIDIA GPGPU».

Проверить уровень аппаратного ускорения графики вы можете при помощи бесплатной утилиты OpenGL Extensions Viewer (http://realtech-vr.com/admin/glview), разработанной компанией realtech VR.

Проверить, использует ли приложение аппаратное ускорение графики для видеокарт NVIDIA, можно при помощи стандартной утилиты командной строки – она показывает все процессы, которые задействуют мощности видеокарты.

14.2. Средства организации виртуализованных рабочих мест

<table>
<thead>
<tr>
<th>Система доставки</th>
<th>Клиент</th>
<th>ОС гостевой машины</th>
<th>GPU сервера</th>
<th>Гипервизор</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMWare Horizon View 7.3</td>
<td>Windows</td>
<td>Windows 7, 10 WindowsServer2016</td>
<td>NVIDIA GRID (Проброс устройства/vGPU)</td>
<td>VMWare vSphere ESXI 6.5</td>
</tr>
<tr>
<td>Citrix XenDesktop 7.14</td>
<td>Windows</td>
<td>Windows 7, 10 WindowsServer2016</td>
<td>NVIDIA GRID (Проброс устройства/vGPU)</td>
<td>Citrix XenServer 7.1</td>
</tr>
</tbody>
</table>
| NICE DCV 2017.1 | Windows/Linux| RHEL 6, 7 SLES 12 CentOS 7 | NVIDIA GRID (Проброс устройства) | VMware vSphere ESXI 6.0 U3
| | | | | Citrix XenServer 7.1 |

Детальный список проверенных на совместимость решений доступен по ссылке в разделе «Документация ANSYS» данного документа.

15 Лицензионная политика для коммерческих продуктов ANSYS

В актуальной версии ANSYS поддерживаются два основных типа лицензий на распараллеливание работы решателей: ANSYS HPC Pack и ANSYS HPC (Workgroup). Данные лицензии позволяют задействовать для расчета...
определённое количество вычислительных потоков (ядер CPU, чипов GPGPU и карт Xeon Phi). Кроме того, некоторые лицензии обладают встроенными HPC возможностями для расчета на нескольких ядрах.

Важно помнить, что лицензии ANSYS HPC Pack и ANSYS HPC (Workgroup) не могут объединяться в рамках одного запущенного решателя.

В дополнение к лицензиям, позволяющим распараллелить работу решателей, существуют лицензии ANSYS HPC Parametric Pack, позволяющие распараллеливать параметрические исследования.

Лицензирование академических продуктов ANSYS в плане HPC осуществляется при помощи специальных лицензий ANSYS Academic HPC – академические продукты не могут работать с коммерческими HPC лицензиями.

15.1. Встроенные HPC возможности решателей

Начиная с версии 19.0 все решатели ANSYS обладают встроенной возможностью выполнения расчета на 4-х ядрах центрального процессора.

Лицензии имеющие встроенные возможности по выполнению расчетов на 4-х ядрах:

- ANSYS Mechanical Pro, Premium, Enterprise
- ANSYS CFD Premium and Enterprise
- ANSYS AIM
- ANSYS Mechanical CFD
- ANSYS Icepak
- ANSYS Slwave
- ANSYS HFSS
- ANSYS Maxwell
- ANSYS Q3D Extractor
- ANSYS Chemkin-Pro and Enterprise
- ANSYS Mechanical CFD Maxwell3D
- ANSYS Mechanical Maxwell3D

Встроенные лицензии могут суммироваться с дополнительно приобретенными лицензиями ANSYS HPC (Workgroup) или ANSYS HPC Pack.

15.2. Лицензии ANSYS HPC (Workgroup)

Начиная с версии 19.0, лицензии ANSYS HPC подходят для решателей ANSYS Electromagnetics Suite. ANSYS HPC могут приобретаться пулами, называемыми ANSYS HPC Workgroup. Такой пул может быть гибко разделен между любым количеством запущенных решателей. В общем случае, не имеет смысла приобретение одной ANSYS HPC лицензии – она не добавит никаких вычислительных мощностей. Таким образом, необходимо приобретать минимум две ANSYS HPC лицензии.

15.3. Лицензии ANSYS HPC Pack

Начиная с версии 19.0, лицензии ANSYS HPC Pack подходят для решателей ANSYS Electromagnetics Suite. Лицензии ANSYS HPC Pack могут объединяться в рамках одного запущенного решателя, разрешая задействовать для расчета определённое количество вычислительных потоков. Количество вычислительных потоков возрастает нелинейно.
Количество вычислительных потоков, активируемое при подключении большего числа ANSYS HPC Pack может быть вычислено по формуле:

Количество вычислительных потоков = 2 \cdot 4^{\text{Количество ANSYS HPC Pack}}

Возможно объединение до 14 лицензий ANSYS HPC Pack в рамках одного запущенного решателя.

15.4. Лицензионирование использования GPGPU для ускорения расчетов.

Для программных продуктов ANSYS с точки зрения лицензионирования чип GPGPU приравнивается к физическому ядру CPU, однако количество вычислительных потоков на GPGPU не может превосходить количество вычислительных потоков на CPU. GPGPU чип расходует лицензии наравне с ядром CPU. Пример расчета некоторых возможных схем использования лицензий приведены в таблице ниже.

| 1 GPGPU чип = 1 CPU ядро и GPGPU ≤ CPU |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| 4 HPC | 8 ядер | 7 CPU + 1 GPGPU | 6 CPU + 2 GPGPU | 4 CPU + 4 GPGPU |
| 1 HPC Pack | 12 ядер | 11 CPU + 1 GPGPU| 10 CPU + 2 GPGPU| 6 CPU + 6 GPGPU |
| 2 HPC Pack | 36 ядер | 35 CPU + 1 GPGPU| 30 CPU + 6 GPGPU | 18 CPU + 18 GPGPU |

Для программных продуктов ANSYS Electromagnetics Suite возможно задействовать 1 GPGPU чип на каждые 8 физических ядер CPU. При этом, сам GPGPU чип не расходует лицензии. Пример расчета некоторых возможных схем использования лицензий приведены в таблице ниже.

| 1 GPGPU чип дается за каждые 8 CPU ядер |
|-----------------|-----------------|-----------------|
| 4 HPC | 8 ядер | 8 CPU + 1 GPGPU |
| 1 HPC Pack | 12 ядер | 12 CPU + 1 GPGPU|
| 2 HPC Pack | 36 ядер | 36 CPU + 4 GPGPU|

Таким образом, лицензионная политика продуктов ANSYS имеет большую гибкость, а ANSYS Electromagnetics Suite позволяет задействовать больше вычислительных ресурсов.

15.5. Лицензии ANSYS HPC Parametric Pack

Лицензии ANSYS HPC Parametric Pack позволяют проводить параметрические исследования с использованием механизмов среды Workbench или встраиваемых в среду. Данные лицензии увеличивают количество одновременно выполняемых параметрических расчетов для одной модели в определённое количество раз (фактически, умножая количество лицензий на решатели и на высокопроизводительные вычисления, задействуемые для расчета одного варианта)

Количество одновременно расчитываемых вариантов = 2 \cdot 2^{\text{Количество ANSYS HPC Parametric Pack}}

Возможно объединение до 5 лицензий ANSYS HPC Parametric Pack в рамках одного запущенного параметрического исследования.

ANSYS HPC Parametric Pack обладают рядом особенностей по взаимодействию с другими лицензиями:

- Работают только с коммерческими лицензиями ANSYS (более подробный список совместимости необходимо уточнить у вашего партнера ANSYS)
- Работают только для задач, поставленных в рамках платформы ANSYS Workbench
- Не работают с решателем ANSYS Explicit STR
- Не работают с академическими лицензиями ANSYS
15.6. Лицензирование ANSYS LS-DYNA

Решатель LS-DYNA, идущий в составе продукта ANSYS LS-DYNA, разрабатывается независимой не публичной компанией LSTC и имеет собственную схему лицензирования HPC. Для распараллеливания ANSYS LS-DYNA необходимо приобретение лицензий ANSYS HPC LS-DYNA 8, 16, 32 и т.д. Данные лицензии могут гибко делиться между любым количеством запущенных решателей (как ANSYS HPC Workgroup).

15.7. Optimetrics + DSO

Лицензия Optimetrics включает возможность использования параметризации в рамках ANSYS Electromagnetics Suite.

DSO позволяют проводить параметрические исследования, определяя количество одновременно выполняемых параметрических исследований для одной модели в определённое количество раз (фактически умножая количество лицензий на решатели и на высокопроизводительные вычисления, задействуемые для расчета одного варианта).

DSO не имеет прогрессивной шкалы роста. Сколько закуплено лицензий DSO, столько вариантов одновременно и можно просчитать.

Не имеет смысла приобретение менее двух лицензий DSO, так как это не даст никаких преимуществ.

16 Лицензионная политика для академических продуктов

Академические продукты ANSYS и ANSYS Electromagnetics Suite имеют отдельную схему лицензирования HPC. Эти продукты не могут использовать коммерческие ANSYS HPC лицензии. Кроме того, для академических лицензий ANSYS не бывает ANSYS Academic HPC Pack – только ANSYS Academic HPC.

Как правило, академические лицензии ANSYS имеют встроенные 16 полноценных ANSYS Academic HPC с возможностью расчетов на GPGPU. Следующие лицензии позволяют задействовать GPGPU для расчетов:

- ANSYS Academic Associate
- ANSYS Academic Research
- ANSYS Academic Research Mechanical
- ANSYS Academic Teaching Advanced
- ANSYS Academic Teaching Introductory
- ANSYS Academic Teaching Mechanical

За более подробной информацией по HPC лицензиям необходимо обратиться к вашему партнеру ANSYS.

17 Документация ANSYS

Далее представлены ссылки на публично доступную актуальную документацию ANSYS:

- Стратегия развития платформы ANSYS
- ANSYS 2019 R1 – поддержка браузеров
• ANSYS 2019 R1 – поддержка CAD
• ANSYS 2019 R1 – поддержка устройств 3Dconnexion
• ANSYS 2019 R1 – протестированные графические карты
• ANSYS 2019 R1 – возможности по ускорению на GPU
• ANSYS 2019 R1 – поддержка реализаций MPI для распределенных вычислений
• ANSYS 2019 R1 – поддержка планировщиков очереди задач
• ANSYS 2019 R1 – поддержка операционных систем по приложениям
• ANSYS 2019 R1 – поддержка средств доставки удаленных рабочих столов и виртуализации рабочих мест
Заключение

Специалисты ООО «КАДФЕМ Украина» на постоянной основе занимаются разработкой архитектуры, внедрением и поддержкой высокопроизводительных систем для выполнения инженерных расчетов. За один год специалисты компании участвуют в нескольких десятках подобных проектов, что позволяет накапливать во многом уникальный опыт, которым мы готовы делиться с нашими заказчиками.

Любые договоры на работы, связанные с аппаратно-программными комплексами, включающими в себя один или несколько нижеперечисленных пунктов, должны проходить проверку квалифицированными техническими специалистами ООО «КАДФЕМУкраина»

- кластер/ЦОД,
- системы удаленной визуализации,
- окружение виртуальных рабочих столов (VDI, Virtual Desktop Infrastructure),
- расчетные сервера,
- расчетные сервера с GPU nVidia TESLA P100.
© ANSYS, Inc., ООО «КАДФЕМ Украина», 2019